
CS3210: Multiprocessors and Locking
Kyle Harrigan

CS3210 - Fall 2017
1 / 42

Administrivia
Quiz errata discussion

Lab 3 (Part B) due tomorrow

Drop Date approaching (Oct 28)

Team Proposal (3-5 min/team) - Oct 24

CS3210 - Fall 2017
2 / 42

Summary of last lectures
Power-on -> BIOS -> bootloader -> kernel -> init (+ user bins)

OS: abstraction, multiplexing, isolation, sharing

Design: monolithic (xv6) vs. micro kernels (jos)

Abstraction: process, system calls

Isolation mechanisms: CPL, segmentation, paging

Interrupts, exceptions

Lazy allocation

CS3210 - Fall 2017
3 / 42

Today: Multiprocessor (and locking?)
Motivation:

CS3210 - Fall 2017
4 / 42

Further motivation: Lab 4
Multiple CPUs running kernel code can cause race conditions

We will approach this problem by implementing (utilizing) locks in the proper
locations

Let us further understand the implementation challenges and tradeoffs with locks
(very much always an open research area and performance concern)

CS3210 - Fall 2017
5 / 42

An Issue
Multiple CPUs operating on same data opens the possibility of simultaneous reads /
writes -> yields incorrect data

Any statement in C may be several CPU instructions

Can also happen in uniprocessor... example?

CS3210 - Fall 2017
6 / 42

An Issue
Multiple CPUs operating on same data opens the possibility of simultaneous reads /
writes -> yields incorrect data

Any statement in C may be several CPU instructions

Can also happen in uniprocessor... example?

Interrupts

CS3210 - Fall 2017
7 / 42

An Issue
Multiple CPUs operating on same data opens the possibility of simultaneous reads /
writes -> yields incorrect data

Any statement in C may be several CPU instructions

Can also happen in uniprocessor... example?

Interrupts

There are many approaches. xv6 approach is on locking / mutual exclusion.

CS3210 - Fall 2017
8 / 42

Race conditions
Ex. File system disk requests

Use a critical section to protect

Locking primitive

Acquire and Release

Invariants

Some data is supposed to remain constant

Example: linked list assumptions... 1) List should point to first node 2) Next points
to next node

Some invariants are temporarily violated (ex. during list insertion)

Race conditions are often hard to reproduce and troubleshoot

CS3210 - Fall 2017
9 / 42

Deadlock
Ex. Dining Philosophers

May need to hold multiple locks to execute a task

xv6 uses a max of two locks. Ex:

ideintr holds ide locks, but also calls wakeup which acquires the ptable lock

More examples in file system (often must lock directory along with file)

CS3210 - Fall 2017
10 / 42

Interrupt handlers
Multiple CPUs and timer ticks (sys_sleep)

Interrupts on a single processor

iderw holds lock, then interrupted to handle ideintr

Mitigate in xv6 by never holding locks with interrupts enabled

CS3210 - Fall 2017
11 / 42

Instruction and Memory Reordering
Modern compilers and processors support out of order execution

Concurrency may expose a hazard due to reordering
Solution: Tell compiler not to reorder (__sync_synchronize() in acquire and
release)

In acquire():

 // Tell the C compiler and the processor to not move loads or stores
 // past this point, to ensure that the critical section's memory
 // references happen after the lock is acquired.
 __sync_synchronize();

In release():

 // Tell the C compiler and the processor to not move loads or stores
 // past this point, to ensure that all the stores in the critical
 // section are visible to other cores before the lock is released.
 // Both the C compiler and the hardware may re-order loads and
 // stores; __sync_synchronize() tells them both to not re-order.
 __sync_synchronize();

CS3210 - Fall 2017
12 / 42

Spinlock shortfalls
Complex groups of functions that may call each other (allocproc, fork, userinit,
ptable.lock)

If everyone acquires lock, we have deadlock

Solution: Force called to hold lock before function all

Kernel programmer must have awareness of what locks should be held

Another solution: recursive locks (complex)

Other examples include pipe read/write complexity (who holds the lock?)

CS3210 - Fall 2017
13 / 42

Real world
Concurrency and parallel programming are active areas of research (grad students
rejoice)

Better to use primitive locks to form higher level constructs

Abstract away locking

xv6 does not do this

libraries like pthreads provide higher level locking capability

Can implement atomic locks without hardware support, but expensive and complex

Another option: lock free data structures and algorithms

Many issues w/ performance related to cache lines, multiple processors, etc.

CS3210 - Fall 2017
14 / 42

Extended assembly
How to interpret?

asm volatile("incl %0"
 : "+m"(count)
 : "m"(count)
 : "memory");

Extended assembly, see https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

asm [volatile] (AssemblerTemplate
 : OutputOperands
 [: InputOperands
 [: Clobbers]])

CS3210 - Fall 2017
15 / 42

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Extended assembly
How to interpret?

asm volatile("incl %0"
 : "+m"(count)
 : "m"(count)
 : "memory");

Extended assembly, see https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

asm [volatile] (AssemblerTemplate
 : OutputOperands
 [: InputOperands
 [: Clobbers]])

asm volatile("incl %0"
 : "+m"(count) // Output operand (reading and writing)
 : "m"(count) //Input operand
 : "memory") //"tells the compiler that the assembly code
//performs memory reads or writes to items other than those listed in the
//input and output operands" (for example, accessing the memory pointed to
//by one of the input parameters).

CS3210 - Fall 2017
16 / 42

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Preparation Question
int count = 0;

void* run(void *arg)
{
 register int cnt = *(int *)arg;
 for (register int i = 0; i < cnt; i++) {
 asm volatile("incl %0"
 : "+m"(count)
 : "m"(count)
 : "memory");
 }
 return NULL;
}

CS3210 - Fall 2017
17 / 42

Preparation Question
int main(int argc, char *argv[])
{
 int ncpu = atoi(argv[1]);
 int upto = atoi(argv[2]);

 pthread_t *tids = malloc(ncpu * sizeof(pthread_t));

 for (int i = 0; i < ncpu ; i ++) {
 if (pthread_create(&tids[i], NULL, run, &upto))
 err(1, "failed to creat a thread");
 }
 for (int i = 0; i < ncpu ; i ++)
 pthread_join(tids[i], NULL);

 printf("cpu = %d, count = %d\n", ncpu, count);

 return 0;
}

CS3210 - Fall 2017
18 / 42

Example: counting
DEMO: count.c

$./count 1 10
cpu = 1, count = 10

$./count 2 5
cpu = 2, count = 10

$./count 1 10000
cpu = 1, count = 10000

$./count 2 5000
cpu = 2, count = 10000

$./count 1 100000
cpu = 1, count = 100000

$./count 2 50000
cpu = 2, count = 53494

CS3210 - Fall 2017
19 / 42

Example: Measuring Execution Time
Execution time reduces by half (x2 utilization)

Q: problem?

$ time ./count 1 1000000000
cpu = 1, count = 1000000000
./count 1 1000000000 2.25s user 0.00s system 99% cpu 2.258 total

$ time ./count 2 500000000
cpu = 2, count = 502495507
./count 2 500000000 2.31s user 0.00s system 197% cpu 1.165 total

CS3210 - Fall 2017
20 / 42

Example: analysis in detail
$ perf stat ./count 1 1000000000
cpu = 1, count = 1000000000

 Performance counter stats for './count 1 1000000000':

 2251.705855 task-clock (msec) # 0.999 CPUs utilized
 88 context-switches # 0.039 K/sec
 3 cpu-migrations # 0.001 K/sec
 56 page-faults # 0.025 K/sec
 7,135,385,783 cycles # 3.169 GHz
 <not supported> stalled-cycles-frontend
 <not supported> stalled-cycles-backend
 4,005,413,202 instructions # 0.56 insns per cycle
 1,000,979,696 branches # 444.543 M/sec
 17,505 branch-misses # 0.00% of all branches

 2.252871308 seconds time elapsed

CS3210 - Fall 2017
21 / 42

Example: analysis in detail
$ perf stat ./count 2 500000000
cpu = 2, count = 503059602

 Performance counter stats for './count 2 500000000':

 2349.797354 task-clock (msec) # 1.992 CPUs utilized
 19 context-switches # 0.008 K/sec
 4 cpu-migrations # 0.002 K/sec
 58 page-faults # 0.025 K/sec
 7,274,653,523 cycles # 3.096 GHz
 <not supported> stalled-cycles-frontend
 <not supported> stalled-cycles-backend
 4,003,964,870 instructions # 0.55 insns per cycle
 1,000,732,490 branches # 425.880 M/sec
 19,942 branch-misses # 0.00% of all branches

 1.179731295 seconds time elapsed

CS3210 - Fall 2017
22 / 42

Q: How to �x this problem?
Two (competing?) goals:

Correctness: no missing counts

Performance: execution time

CS3210 - Fall 2017
23 / 42

Attempt 1: use only one CPU
pin_cpu(0): fix its execution to the first CPU (id = 0)

01 void pin_cpu(int cpu) {
02 cpu_set_t cpuset;
03 CPU_ZERO(&cpuset);
04 CPU_SET(cpu, &cpuset);
05
06 if (pthread_setaffinity_np(pthread_self(), \
07 sizeof(cpu_set_t), &cpuset) < 0)
08 err(1, "failed to set affinity");
09 }

CS3210 - Fall 2017
24 / 42

Result (attempt 1)
Q: correctness? performance?

$ time ./count 1 1000000000
cpu = 1, count = 1000000000
2.26s user 0.00s system 99% cpu 2.266 total

$ time ./count 2 500000000
cpu = 2, count = 1000000000
2.31s user 0.00s system 99% cpu 2.316 total

CS3210 - Fall 2017
25 / 42

Attempt 2: use atomic operation
Add a lock prefix (all memory ops)

01 asm volatile("lock incl %0"
02 : "+m"(count)
03 : "m"(count)
04 : "memory");

CS3210 - Fall 2017
26 / 42

Result
Q: correctness? performance?

$ time ./count 1 1000000000
cpu = 1, count = 1000000000
6.64s user 0.00s system 99% cpu 6.644 total

$ time ./count 2 500000000
cpu = 2, count = 1000000000
49.76s user 0.00s system 199% cpu 24.893 total

CS3210 - Fall 2017
27 / 42

Analysis (see stall cycles)
$ perf stat ./count 2 500000000
cpu = 2, count = 1000000000

 Performance counter stats for './count 2 500000000':

 62475.069100 task-clock (msec) # 1.988 CPUs utilized
 5,228 context-switches # 0.084 K/sec
 3 cpu-migrations # 0.000 K/sec
 80 page-faults # 0.001 K/sec
134,913,649,220 cycles # 2.159 GHz [83.34%]
133,127,752,850 stalled-cycles-frontend # 98.68% frontend cycles idle [83.34%]
 78,451,841,095 stalled-cycles-backend # 58.15% backend cycles idle [66.67%]
 4,103,848,320 instructions # 0.03 insns per cycle
 # 32.44 stalled cycles per insn [83.34%]
 1,018,681,684 branches # 16.305 M/sec [83.34%]
 474,657 branch-misses # 0.05% of all branches [83.32%]

 31.427313911 seconds time elapsed

CS3210 - Fall 2017
28 / 42

Attempt 3: compute locally (per CPU)
Q: correctness? performance?

Q: how to improve perf even further?

Q: how to trigger a race?

01 int local = 0;
02 for (register int i = 0; i < cnt; i++)
03 local ++;
04
05 count += local;

CS3210 - Fall 2017
29 / 42

Attempt 3: compute locally (per CPU)
Q: correctness? performance?

Q: how to improve perf even further?

Q: how to trigger a race?

01 int local = 0;
02 for (register int i = 0; i < cnt; i++)
03 local ++;
04
05 count += local;

$ time ./count_local 1 1000000000
cpu = 1, count = 1000000000
real 0m1.847s
user 0m1.832s
sys 0m0.012s

$ time ./count_local 2 500000000
cpu = 2, count = 1000000000

real 0m0.896s
user 0m1.780s
sys 0m0.004s

CS3210 - Fall 2017
30 / 42

Attempt 4: using locks
01 int local = 0;
02 for (register int i = 0; i < cnt; i++)
03 local ++;
04
05 acquire(&lock);
06 count += local;
07 release(&lock)

CS3210 - Fall 2017
31 / 42

Attempt 4: using locks
01 int local = 0;
02 for (register int i = 0; i < cnt; i++)
03 local ++;
04
05 acquire(&lock);
06 count += local;
07 release(&lock)

Perhaps a reasonable solution

Lock is localized to where we need it (contention low)

Performance is good

Correctness is good

CS3210 - Fall 2017
32 / 42

Locks
Mutual exclusion: only one core can hold a given lock

concurrent access to the same memory location, at least one write

example: acquire(l); x = x + 1; release(l);

Serialize critical section: hide intermediate state

another example: transfer money from account A to B

put(a + 100) and put(b - 100) must be both effective, or neither

CS3210 - Fall 2017
33 / 42

Strawman: locking
01 struct lock { int locked; };
02
03 void acquire(struct lock *l) {
04 for (;;) {
05 if (l->locked == 0) { // A: test
06 l->locked = 1; // B: set
07 return;
08 }
09 }
10 }
11
12 void release(struct lock *l) {
13 l->locked = 0;
14 }

CS3210 - Fall 2017
34 / 42

Strawman: locking
01 struct lock { int locked; };
02
03 void acquire(struct lock *l) {
04 for (;;) {
05 if (l->locked == 0) { // A: test
06 l->locked = 1; // B: set
07 return;
08 }
09 }
10 }
11
12 void release(struct lock *l) {
13 l->locked = 0;
14 }

No, this doesn't work

Non-atomic test and set has a race condition

CS3210 - Fall 2017
35 / 42

Relying on an atomic operation
Q: correctness? performance?

01 struct lock { int locked; };
02
03 void acquire(struct lock *l) {
04 for (;;) {
05 if (xchg(&l->locked, 1) == 0)
06 return;
07 }
08 }
09
10 void release(struct lock *l) {
11 xchg(&l->locked, 0);
12 }

CS3210 - Fall 2017
36 / 42

Using xchg: an atomic operation (primitive)
x86.h in xv6

01 int xchg(volatile int *addr, int newval) {
02 int result;
03 // The + in "+m" denotes a read-modify-write operand.
04 asm volatile("lock; xchgl %0, %1" :
05 "+m" (*addr), "=a" (result) :
06 "1" (newval) :
07 "cc");
08 return result;
09 }

CS3210 - Fall 2017
37 / 42

Result
$ time ./count_xchg 1 1000000000
cpu = 1, count = 1000000000

real 0m1.876s
user 0m1.872s
sys 0m0.012s

$ time ./count_xchg 2 500000000
cpu = 2, count = 1000000000

real 0m0.925s
user 0m1.832s
sys 0m0.008s

CS3210 - Fall 2017
38 / 42

Spinlock in xv6
Pretty much same, but provide debugging info

01 struct spinlock {
02 uint locked; // Is the lock held?
03
04 // Q?
05 char *name; // Name of lock.
06 struct cpu *cpu; // The cpu holding the lock.
07 uint pcs[10]; // The call stack (an array of program counters)
08 // that locked the lock.
09 };

CS3210 - Fall 2017
39 / 42

acquire() in xv6
01 void acquire(struct spinlock *lk) {
02 pushcli(); // disable interrupts to avoid deadlock.
03 if (holding(lk))
04 panic("acquire");
05
06 // The xchg is atomic.
07 // It also serializes, so that reads after acquire are not
08 // reordered before it.
09 while (xchg(&lk->locked, 1) != 0)
10 ;
11
12 // Record info about lock acquisition for debugging.
13 lk->cpu = cpu;
14 getcallerpcs(&lk, lk->pcs);
15 }

CS3210 - Fall 2017
40 / 42

release() in xv6
01 void release(struct spinlock *lk) {
02 if (!holding(lk))
03 panic("release");
04
05 lk->pcs[0] = 0;
06 lk->cpu = 0;
07
08 // Q?
09 xchg(&lk->locked, 0);
10
11 popcli();
12 }

CS3210 - Fall 2017
41 / 42

References
Intel Manual
UW CSE 451
OSPP
MIT 6.828
Wikipedia
The Internet

CS3210 - Fall 2017
42 / 42

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

