
CS3210: User Environments and
Interrupts

Dr. Tim Andersen

CS3210 - Fall 2017
1 / 40

Administrivia
Quiz 1 on Tuesday, 10/3.

Final Project Pre-Proposal due 10/2.

Team Propsals presented on 10/24. Can change your group membership
freely until then.

Lab 2 due Friday, 9/29.

Lab 3 Part A due 10/6 (Part B with Part A corrections due the following
week).

CS3210 - Fall 2017
2 / 40

CS3210 - Fall 2017

CS3210 - Fall 2017

Quiz 1
80 minutes
Open notes and laptop, NO internet
Hand Written (no electronic submissions but you may be asked to run
code or shell commands)
Covers:

Lab 1-2, Chapter 0-2, Appendix A/B
Lectures up to and including Lecture 6
Tutorials up to and including Tutorial 4

Be sure to understand the following:
Boot up sequence
Segmentation and Isolation
Shells and OS organization (syscalls, fork, pipe, FDs, etc.)
Virtual memory (including x86 architecture)
C coding
x86 assembly that has been used in labs, lectures, and tutorials so-far
Calling conventions (stack frames, etc.)

Old MIT 6.828 quizzes (which are the same format) are linked from
CS3210 website's references (at the bottom)

CS3210 - Fall 2017
3 / 40

CS3210 - Fall 2017

User Environments
Environments or Processes used for executing user processes
Space for meta-data on processes allocated in kernel at boot:

 struct {
 struct spinlock lock;
 struct proc proc[NPROC]; // Allocate for NPROC processes
 } ptable;

In xv6, this is done in the kernel's stack. In JOS, need to allocate pages.

CS3210 - Fall 2017
4 / 40

CS3210 - Fall 2017

Steps to Running a Process (xv6) or
Environment (JOS)

1. Initialize the environment table and set up the GDT.

2. Set up the kernel portion (>KERNBASE) of virtual memory for each
process

3. Map physical memory for the process (below KERNBASE) (text + rodata +
stack + heap)

4. Load the user binary into the mapped memory for text + rodata by
reading the ELF headers

5. Run the environment or hand it off the scheduler.

CS3210 - Fall 2017
5 / 40

CS3210 - Fall 2017

Initializing User Environments
JOS function:

env_init()
Initialize all of the Env structures in the envs array and add them to
the env_free_list. Also calls env_init_percpu, which configures the
segmentation hardware with separate segments for privilege level 0
(kernel) and privilege level 3 (user).

Xv6 function:

Partly just definition (no linked list, just an array) and switchuvm to set up
the process GDT

CS3210 - Fall 2017
6 / 40

CS3210 - Fall 2017

Setting up Virtual Memory Mapping
JOS function:

env_setup_vm()
Allocate a page directory for a new environment and initialize the
kernel portion of the new environment’s address space.

Xv6 function:

setupkvm()
Allocates the kernel portion of a process (as well as kpgdir when there
is no process)

CS3210 - Fall 2017
7 / 40

CS3210 - Fall 2017

Mapping physical memory for an
environment
JOS function:

region_alloc()
Allocates and maps physical memory for an environment

Xv6 function:

allocuvm()
Grows the process allocation (can start from 0)

CS3210 - Fall 2017
8 / 40

CS3210 - Fall 2017

Loading ELF code from binary
JOS functions:

env_create()
Allocate an environment with env_alloc and call load_icode load an
ELF binary into it.

load_icode()
You will need to parse an ELF binary image, much like the boot loader
already does, and load its contents into the user address space of a
new environment.
JOS supports all user programs being linked into the kernel image so
no file system needed!

Xv6 function:

exec() (exec.c)

Xv6 assumes you have a file system and that files are being loaded
from disk.
exec loads the binary from disk (loaduvm() helper function loades
each segment in pages)

Also userinit() and inituvm() for the first process initcode which is linked
into the kernel but not ELF.

CS3210 - Fall 2017
9 / 40

CS3210 - Fall 2017

Running the binary
JOS function:

env_run()
Start a given environment running in user mode.

Xv6 function:

No real equivalent. Handled by the scheduler() in proc.c and switchuvm().

CS3210 - Fall 2017
10 / 40

CS3210 - Fall 2017

Interrupt
An interrupt informs the CPU that a service is needed

Sources of interrupts

Internal faults: divide by zero, overflow
User software
Hardware
Reset

Def: An event external to the currently executing process that causes a change
in the normal flow of instruction execution; usually generated by hardware
devices external to the CPU.*

CS3210 - Fall 2017

* "Design and Implementation of the FreeBSD Operating System", Glossary

11 / 40

CS3210 - Fall 2017

Why Interrupts?
People can't use a CPU without things attached to it

Keyboard, mouse, screen, disk drives, network cards, etc.

Also want to have the ability to stop a running program when it messes
something up and clean up.

Devices need CPU services at unpredictable times.

Want the CPU busy doing useful work between events but also stop what
it is doing and service those events in a timely manner.

CS3210 - Fall 2017
12 / 40

CS3210 - Fall 2017

Polling?
Have the CPU periodically check each device to see if it needs attention

CS3210 - Fall 2017
13 / 40

CS3210 - Fall 2017

Polling?
Have the CPU periodically check each device to see if it needs attention

Inefficient if events are on a slow timescale
If events happen rapidly, can be more efficient.

Polling is like checking your phone every few seconds to see if you have a
message.

Interrupts is like waiting for your phone to play a sound when you have a
message

CS3210 - Fall 2017
14 / 40

CS3210 - Fall 2017

x86 Exceptions and Interrupts
Every Exception/Interrupt type is assigned a number

its vector

When an interrupt occurs, the vector determines what code is invoked to
handle the interrupt

JOS example:

vector 14 -> page fault handler
vector 32 -> clock handler -> scheduler

CS3210 - Fall 2017
15 / 40

CS3210 - Fall 2017

Hardware Interrupts
Non-Maskable Interrupts

Never ignored, e.g., power failure, memory error
In x86, vector 2, prevents other interrupts from executing.

INTR Maskable

Ignored when [[IF]] in EFLAGS is 0
Enabling/disabling:

- `sti`: set interrupt
- `cli`: clear interrupt

INTA
Interrupt acknowledgement

CS3210 - Fall 2017
16 / 40

CS3210 - Fall 2017

PIC: Programmable Interrupt Controller
(8259A)

Has 16 wires for 8 devices, interrupts and data lines, (IR0-IR7 and D0-D7)

Can be programmed to map IRQ0-7 -> vector number

Vector number is signaled over INTR line

Daisy-Chain up to 8 slave PICs to one master for up to 64 devices.

Interrupt Mask Register (Port 21H) enbles/disables interrupts at PIC

In JOS/lab4

vector <- (IRQ# + OFFSET)

CS3210 - Fall 2017
17 / 40

CS3210 - Fall 2017

PIC Diagram

CS3210 - Fall 2017
18 / 40

CS3210 - Fall 2017

"Software" interrupt: INT
Intentionally interrupts

x86 provides the INT instruction
Invokes the interrupt handler for the vector (0-255)
JOS: INT 0x30 for system calls

xv6: INT 0x40 for system calls

Entering: int N
Exiting: iret

CS3210 - Fall 2017
19 / 40

CS3210 - Fall 2017

The INT instruction
The INT instruction has the following steps:

decide the vector number, in this case it's the 0x40 in int 0x40
fetch the interrupt descriptor for vector 0x40 from the IDT. The CPU
finds it by taking the 0x40'th 8-byte entry starting at the physical
address that the IDTR CPU register points to.
check that CPL <= DPL in the descriptor (but only if INT instruction).
save ESP and SS in a CPU-internal register (but only if target segment
selector's PL < CPL).
load SS and ESP from TSS ("")
push user SS ("")
push user ESP ("")
push user EFLAGS
push user CS
push user EIP
clear some EFLAGS bits
set CS and EIP from IDT descriptor's segment selector and offset

CS3210 - Fall 2017
20 / 40

CS3210 - Fall 2017

Example: entering (usys.S)
vectorN -> alltraps -> trap() -> syscall()

01 #define SYSCALL(name) \
02 .globl name; \
03 name: \
04 movl $SYS_ ## name, %eax; \
05 int $T_SYSCALL; \
06 ret
07
08 SYSCALL(fork)
09 SYSCALL(exit)
10 ...

CS3210 - Fall 2017
21 / 40

CS3210 - Fall 2017

Example: exiting (trapasm.S)
syscall() -> trapret() -> iret

01 .globl trapret
02 trapret:
03 popal
04 popl %gs
05 popl %fs
06 popl %es
07 popl %ds
08 addl $0x8, %esp # trapno and errcode
09 iret

CS3210 - Fall 2017
22 / 40

CS3210 - Fall 2017

Interrupt Vector (vector.S)
int 0 -> vector0

01 # handlers
02 vector0:
03 pushl $0
04 pushl $0
05 jmp alltraps
06 ...
07
08 # vector table
09 vectors:
10 .long vector0
11 .long vector1
12 ...

CS3210 - Fall 2017
23 / 40

CS3210 - Fall 2017

Interrupt Vector
Some vectors need to push 0 for their error code and others do not

01 vector0:
02 pushl $0 ; error code
03 pushl $0 ; #vector
04 jmp alltraps
05
06 ...
07 vector8:
08 pushl $8 ; #vector
09 jmp alltraps
10 ...

CS3210 - Fall 2017
24 / 40

CS3210 - Fall 2017

Trap Handling DEMO
int 0x40 entered the kernel at vector64, generated by vectors.pl. b
vector64
What is the current CPL? How was it set?

Could the user abuse the INT instruction to exercise privilege or
break the kernel?

x/6x $esp in order to see what int put on the stack.
What stack is being used?

x/3i vector64
vector64 pushes a few items on the stack and then jumps to alltraps.
Why not have vector 64 in the IDT point directly to alltraps?

Single-step alltraps until pushl %esp, then x/19x $esp.
Compare with struct trapframe (x86.h)

At the start of trap(), what is tf->trapno?
How was it set?

CS3210 - Fall 2017
25 / 40

CS3210 - Fall 2017

Trap Return
syscall() returns to trap(), and trap() returns to alltraps

b trap.c:44 (instruction after call syscall).

print *tf
What is different and why?
si until popal.
x/19x $esp to see the trap frame again.

single-step until iret, x/5x $esp, single-step

into user space. Print the registers and stack.

CS3210 - Fall 2017
26 / 40

CS3210 - Fall 2017

Fault Handling Traps
What would happen if a user program divided by zero? - What if kernel
code divided by zero?
In Unix, traps often get translated into signals to the process.

Some traps, though, are (partially) handled internally by the kernel --
which ones?

Some traps push an extra error code onto the stack (typically containing
the segment descriptor that caused a fault).

But this error code isn't pushed by the INT instruction.
Can the user confuse the kernel by invoking INT 0xc (or any other
vector that usually pushes an error code)? Why not?

CS3210 - Fall 2017
27 / 40

CS3210 - Fall 2017

JOS Trap Frame
struct Trapframe {
 struct PushRegs tf_regs;
 uint16_t tf_es;
 uint16_t tf_padding1;
 uint16_t tf_ds;
 uint16_t tf_padding2;
 uint32_t tf_trapno;
 /* below here defined by x86 hardware */
 uint32_t tf_err;
 uintptr_t tf_eip;
 uint16_t tf_cs;
 uint16_t tf_padding3;
 uint32_t tf_eflags;
 /* below here only when crossing rings, such as from user to kernel */
 uintptr_t tf_esp;
 uint16_t tf_ss;
 uint16_t tf_padding4;
} __attribute__((packed));

CS3210 - Fall 2017
28 / 40

CS3210 - Fall 2017

Real-mode
For any INT n, n is multiplied by 4

In the address “4n” the offset address the handler is found

Example:Intel has set aside INT 2 for the NMI interrupt

Whenever the NMI pin is activated, the CPU jumps to physical
memory location 00008 to fetch the CS:IP of the interrupt service
routine associated with the NMI.

In protected mode, this scheme is replaced by the Interrupt Descriptor
Table

CS3210 - Fall 2017
29 / 40

CS3210 - Fall 2017

Interrupt Descriptor Table
IDT

Table of 256 8-byte entries (similar to GDT)
In JOS: Each specifies a protected entry-point into the kernel
Located anywhere in memory

IDTR register

Stores current IDT

lidt instruction

Loads IDTR with address and size of the IDT
Takes in a linear address

CS3210 - Fall 2017
30 / 40

CS3210 - Fall 2017

Interrupt Descriptor Table Diagram

CS3210 - Fall 2017
31 / 40

CS3210 - Fall 2017

Initializing IDT in xv6 (trap.c)
main() -> tvinit()

01 void tvinit(void)
02 {
03 int i;
04 for (i = 0; i < 256; i++)
05 SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);
06
07 // Q?
08 SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, \
09 vectors[T_SYSCALL], DPL_USER);
10 }

CS3210 - Fall 2017
32 / 40

CS3210 - Fall 2017

Initializing IDT in xv6 (trap.c)
main() -> idtinit()

01 void
02 idtinit(void)
03 {
04 lidt(idt, sizeof(idt));
05 }

CS3210 - Fall 2017
33 / 40

CS3210 - Fall 2017

Interrupt Descriptor Entry
Offset is a 32-bit value split into two parts pointing to the destination IP or
EIP

Segment selector points to the destination CS in the kernel

Present flag indicates that this is a valid entry

Descriptor Privilege Level indicates the minimum privilege level of the
caller to prevent users from calling hardware interrupts directly

Size of gate can be 32 bits or 16 bits

Gate can be interrupt (int instruction) or trap gate

CS3210 - Fall 2017
34 / 40

CS3210 - Fall 2017

Interrupt Descriptor Entry

CS3210 - Fall 2017
35 / 40

CS3210 - Fall 2017

Interrupt Descriptor Table

CS3210 - Fall 2017
36 / 40

CS3210 - Fall 2017

Prede�ned Interrupt Vectors
0: Divide Error
1: Debug Exception
2: Non-Maskable Interrupt
3: Breakpoint Exception (e.g., int3)
4: Invalid Opcode
13: General Protection Fault
14: Page Fault
18: Machine Check (abort)
32-255: User Defined Interrupts

CS3210 - Fall 2017
37 / 40

CS3210 - Fall 2017

Software Exceptions
Processor detects an error condition while executing

E.g., divl %eax, %eax

Divide by zero if eax = 0

E.g., movl %ebx, (%eax)

Page fault or seg violation if eax is unmapped

E.g., jmp $BAD_JMP

General Protection Fault (jmpd out of CS)

CS3210 - Fall 2017
38 / 40

CS3210 - Fall 2017

Example: Divide Error
01 int main(int argc, char **argv)
02 {
03 int x, y, z;
04 if (argc < 3)
05 exit();
06
07 x = atoi(argv[1]);
08 y = atoi(argv[2]);
09
09 // Q?
10 z = x / y;
11 printf(1, "%d / %d = %d\n", x, y, z);
12 exit();
13 }

CS3210 - Fall 2017
39 / 40

CS3210 - Fall 2017

Example: 0/0 = ?

CS3210 - Fall 2017

0:00 / 0:20

40 / 40

CS3210 - Fall 2017

