
CS3210: Isolation Mechanisms
Lecture 4

Instructor: Kyle Harrigan

CS3210 - Fall 2017
1 / 35



Administrivia
Lab 2 on Virtual Memory Due Sep 29 (one of the trickiest labs!)

(Oct 3) Quiz #1. Lab1-2, Ch 0-3, Appendix A/B

(Oct 2) Final Project Pre-Proposal Due

Start forming groups and brainstorming now

CS3210 - Fall 2017
2 / 35



Outline
Kernel Organization: Monolithic vs. Microkernel

Isolation

System Calls

Memory

CS3210 - Fall 2017
3 / 35



Kernel Organization: Kernel vs. User
Mode

What runs in kernel mode?

CS3210 - Fall 2017
4 / 35



Kernel Organization: Kernel vs. User
Mode

What runs in kernel mode?

If the kernel interface is the system call interface, then, in general, all
operating system functions run in kernel mode.

This is the monolithic kernel design.

CS3210 - Fall 2017
5 / 35



Kernel Organization: Microkernel vs Monolithic Kernel

VFS

IPC, File System

Scheduler, Virtual Memory

Device Drivers, Dispatcher, ... Basic IPC, Virtual Memory, Scheduling

UNIX
Server

Device
Driver

File
Server

Application
IPC

System CallApplication

Hardware Hardware

user
mode

kernel
mode

Monolithic Kernel
based Operating System

Microkernel
based Operating System

Source: wikipedia

Many other options, with lines blurred

- Exokernel

- Hybrid Kernel 

CS3210 - Fall 2017
6 / 35



Kernel Organization: Monolithic Kernel
In the monolithic organization the complete operating system runs with full
hardware privilege -- xv6 text

Pros:

OS designer does not need to determine which parts of the OS need which
privilege.

Easy for parts of OS to cooperate.

Con:

Mistakes are easier to make and often fatal.

CS3210 - Fall 2017
7 / 35



Kernel Organization: Microkernel
Microkernel reduces the number of lines that run in kernel mode to a
minimum.

Pros:

Mistakes are fewer and less fatal

Cons:

Performance is generally worse.

CS3210 - Fall 2017
8 / 35



Kernel Organization: Monolithic vs.
Microkernel

Linux is a mixture, mostly monolithic, but with many functions
performed at the user level

xv6 is monolithic but so small it is smaller than some microkernels.

CS3210 - Fall 2017
9 / 35



Today: isolation
Isolation vs. protection?

CS3210 - Fall 2017
10 / 35



Today: isolation
Isolation vs. protection?

Isolation: user programs cannot interfere with one-another.

Protection: user programs cannot access, e.g., memory that is not
allocated to them, kernel privilege functions, etc.

CS3210 - Fall 2017
11 / 35



Today: isolation
Isolation vs. protection?

Isolation: user programs cannot interfere with one-another.

Protection: user programs cannot access, e.g., memory that is not
allocated to them, kernel privilege functions, etc.

What is the "unit" of isolation?

CS3210 - Fall 2017
12 / 35



The unit of isolation: "The Process"
Prevent process X from wrecking or spying on process Y

(e.g., memory, cpu, FDs, resource exhaustion)

Prevent a process from wrecking the operating system itself

(i.e. from preventing kernel from enforcing isolation)

In the face of bugs or malice

(e.g. a bad process may try to trick the h/w or kernel)

If one process has a bug, it shouldn't impact others that are not its
children.

Q: can we isolate a process from kernel?

CS3210 - Fall 2017
13 / 35



Complete Isolation
The goal of isolation is to protect processes from one another

Can we enforce complete isolation?

CS3210 - Fall 2017
14 / 35



Complete Isolation
The goal of isolation is to protect processes from one another

Can we enforce complete isolation? No.

The OS must also allow for two other requirements:

interaction between processes via pipes, shared mem, etc.

multiplexing processes so that all processes can appear to run at the
same time even with one CPU, sleep and wakeup based on conditions
set by other processes, etc.

CS3210 - Fall 2017
15 / 35



Isolation mechanisms in operating
systems

1. User/kernel mode flag (aka ring or Privilege Level)

2. Address spaces

3. Timeslicing (later)

4. System call interface

CS3210 - Fall 2017
16 / 35



Hardware isolation in x86

x86 support: kernel/user mode flag

CPL (current privilege level): lower 2 bits of %cs

0: kernel, privileged

3: user, unprivileged

CS3210 - Fall 2017
17 / 35



Hardware isolation in x86 (aka ring)

CS3210 - Fall 2017
18 / 35



What does "ring 0" protect?
Protects everything relevant to isolation

writes to %cs (to defend CPL)

every memory read/write is checked for privilege level

I/O port accesses are privileged

control register accesses (eflags, %cs4, ...)

Q: What happens if a user program attempts to execute a privileged
instruction?

CS3210 - Fall 2017
19 / 35



How to switch b/w rings (ring 0 <-> ring
3)?

Controlled transfer: system call

int or sysenter instruction set CPL to 0

set CPL to 3 before going back to user space

E.g., every read or write to screen or disk requires int in x86.

CS3210 - Fall 2017
20 / 35



System call handling
Switches to a kernel determined entry point.

Kernel must:

Validate the system call arguments

Determine if the process is allowed to perform the operation

Deny or execute it.

CS3210 - Fall 2017
21 / 35



Making system calls in xv6 (usys.S)
01    #include "syscall.h"
02    #include "traps.h"
03
04    #define SYSCALL(name)         \
05      .globl name;                \
06      name:                       \
07        movl $SYS_ ## name, %eax; \
08        int $T_SYSCALL;           \
09        ret
10
11    SYSCALL(fork)
12    SYSCALL(exit)
13    ...

CS3210 - Fall 2017
22 / 35



Returning back to userspace
(trapasm.S)

syscall() -> trapret() -> iret

01    .globl trapret
02    trapret:
03      popal
04      popl %gs
05      popl %fs
06      popl %es
07      popl %ds
08      addl $0x8, %esp  ## trapno and errcode
09      iret

CS3210 - Fall 2017
23 / 35



How to isolate process memory?
Idea: "address space"

Give each process own memory space

Prevent it from accessing other memory (kernel or other processes)

x86 provides "paging hardware" (next week)

MMU: VA -> PA

CS3210 - Fall 2017
24 / 35



Virtual address space in xv6
       +-=> +------------------+  <= 0xFFFFFFFF
       |    |                  |
       |    |    free memory   |
       |    +------------------+
kernel |    | kernel text/data |  4MB
space  |    +------------------+  <= 0x80100000
(CPL=0)|    |       BIOS       |
       +-=> +------------------+  <= 0x80000000 (KERNBASE)
       |    |       heap       |
       |    +------------------+
user   |    |       stack      |
space  |    +------------------+
(CPL=3)|    |  user text/data  |
       +-=> +------------------+  <= 0x00000000

CS3210 - Fall 2017
25 / 35



How to isolate CPU?
Prevent a process from hogging the CPU, e.g. buggy infinite loop

Cooperative vs. uncooperative scheduling

Yield vs. clock driven

xv6 relies on clock interrupt for context switching (next week)

CS3210 - Fall 2017
26 / 35



How to represent a process in xv6
(proc.h)?
01  struct proc {
02    uint sz;                     // Size of process memory (bytes)
03    pde_t* pgdir;                // Page table
04    char *kstack;                // Bottom of kernel stack
05    enum procstate state;        // Process state
06    int pid;                     // Process ID
07    struct proc *parent;         // Parent process
08    struct trapframe *tf;        // Trap frame for current syscall
09    struct context *context;     // swtch() here to run process
10    void *chan;                  // If non-zero, sleeping on chan
11    int killed;                  // If non-zero, have been killed
12    struct file *ofile[NOFILE];  // Open files
13    struct inode *cwd;           // Current directory
14    char name[16];               // Process name (debugging)
15  };

CS3210 - Fall 2017
27 / 35



Code: �rst kernel code (entry.S)
entry point of kernel

enable paging

setup stack

handover to main in main.c

CS3210 - Fall 2017
28 / 35



Code: the �rst process (proc.c)
allocate a proc with allocproc()

setup vm: setupkvm() and inituvm()

setup tf to launch initcode.S

CS3210 - Fall 2017
29 / 35



The �rst address space in xv6
                        +------------------+  <= 0xFFFFFFFF
                        |                  |
                        |    free memory   |
                       ++------------------+
                      / | kernel text/data |  (kernel)
                     /  +------------------+  <= 0x80100000
                     +  |       BIOS       |
   physical mem     /  ++------------------+  <= 0x80000000
                   /  / |       heap       |  (KERNBASE)
+------------------+  | +------------------+
| kernel text/data |  + |       stack      |
+------------------+ /  +------------------+
|       BIOS       |/   |  user text/data  |  (initcode)
+------------------+    +------------------+  <= 0x00000000

CS3210 - Fall 2017
30 / 35



Code: a new kernel stack (proc.c)
   +------------------+ <= proc=>kstack + KSTACKSIZE
   |       esp        |
   |       ...        |
   |       eip        |
   +------------------+ <= proc=>tf
   |     trapret      |
   +------------------+
   |       eip ---------=> forkret
   |       ...        |
   +------------------+ <= proc=>context
   |     (empty)      |
   |                  |
   +------------------+ <= proc=>kstack

CS3210 - Fall 2017
31 / 35



Code: running the �rst process
mpmain()

scheduler()

runs initcode.S

CS3210 - Fall 2017
32 / 35



Code: the �rst system call (initcode.S)
handover to "/init" (Q: why not just invoke "/init"?)

01  .globl start
02  start:
03    pushl $argv  // argv[] = {init, 0}
04    pushl $init  // init[] = "/init\0"
05    pushl $0     // where caller pc would be
06    movl $SYS_exec, %eax
07    int $T_SYSCALL

CS3210 - Fall 2017
33 / 35



Code: the /init process (init.c)
01  int main(void) {
02    open("console", O_RDWR) // Q1?
03    dup(0);                 // Q2?
04    dup(0);                 // Q3?
05    for(;;) {
06      if (!fork())          // Q4?
07        exec("sh", argv);   // Q5?
08      wait();
09    }
10  }

$ git clone git@github.gatech.edu:cs3210-fall2017/cs3210-pub

or

$ cd cs3210-pub
$ git pull

CS3210 - Fall 2017
34 / 35



References
Intel Manual
UW CSE 451
OSPP
MIT 6.828
Wikipedia
The Internet

CS3210 - Fall 2017
35 / 35

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/



