(53210: Isolation Mechanisms

Lecture 4

Instructor: Kyle Harrigan

Administrivia
e Lab 2 on Virtual Memory Due Sep 29 (one of the trickiest labs!)
e (Oct 3) Quiz #1. Lab1-2, Ch 0-3, Appendix A/B

e (Oct 2) Final Project Pre-Proposal Due

o Start forming groups and brainstorming now

2/ 35

CS3210 - Fall 2017

Outline

Kernel Organization: Monolithic vs. Microkernel

Isolation

System Calls

Memory

3 /35

CS3210 - Fall 2017

Kernel Organization: Kernel vs. User
Mode

e What runs in kernel mode?

Kernel Organization: Kernel vs. User
Mode

e What runs in kernel mode?

o If the kernel interface is the system call interface, then, in general, all
operating system functions run in kernel mode.

o This is the monolithic kernel design.

S5 /35

CS3210 - Fall 2017

Kernel Organization: Microkernel vs Monolithic Kernel

Monolithic Kernel Microkernel
based Operating System based Operating System
Application System Call

Application UNIX Device

1IPC Server Driver

kernel
mode

Source: wikipedia

» Many other options, with lines blurred

- Exokernel

- Hybrid Kernel
6 /35

Kernel Organization: Monolithic Kernel

In the monolithic organization the complete operating system runs with full
hardware privilege -- Xv6 text

Pros:

e OS designer does not need to determine which parts of the OS need which
privilege.

« Easy for parts of OS to cooperate.
Con:

e Mistakes are easier to make and often fatal.

7 /35

CS3210 - Fall 2017

Kernel Organization: MicroRernel

Microkernel reduces the number of lines that run in kernel mode to a
minimum.

Pros:

o Mistakes are fewer and less fatal

Cons:

e Performance is generally worse.

8 /35

CS3210 - Fall 2017

Kernel Organization: Monolithic vs.
MicroRernel

e Linux is a mixture, mostly monolithic, but with many functions
performed at the user level

e XVv6 is monolithic but so small it is smaller than some microkernels.

9 /35

CS3210 - Fall 2017

Today: isolation

» Isolation vs. protection?

10 ‘ 35
CS3210 - Fall 2017

Today: isolation

» Isolation vs. protection?
o Isolation: user programs cannot interfere with one-another.

o Protection: user programs cannot access, e.g., memory that is not
allocated to them, kernel privilege functions, etc.

11 ‘ 35
C$3210 - Fall 2017

Today: isolation

» Isolation vs. protection?
o Isolation: user programs cannot interfere with one-another.

o Protection: user programs cannot access, e.g., memory that is not
allocated to them, kernel privilege functions, etc.

e What is the "unit" of isolation?

12 ‘ 35
C$3210 - Fall 2017

The unit of isolation: "The Process”

e Prevent process X from wrecking or spying on process Y

o (e.g., memory, cpu, FDs, resource exhaustion)

Prevent a process from wrecking the operating system itself

o (i.e. from preventing kernel from enforcing isolation)

In the face of bugs or malice

o (e.g. abad process may try to trick the h/w or kernel)

If one process has a bug, it shouldn't impact others that are not its
children.

Q: can we isolate a process from kernel?

13 ‘ 35
C$3210 - Fall 2017

Complete Isolation

» The goal of isolation is to protect processes from one another

« Can we enforce complete isolation?

14 ‘ 35
C$3210 - Fall 2017

Complete Isolation

» The goal of isolation is to protect processes from one another
« Can we enforce complete isolation? No.
e The OS must also allow for two other requirements:

o interaction between processes via pipes, shared mem, etc.

o multiplexing processes so that all processes can appear to run at the
same time even with one CPU, sleep and wakeup based on conditions
set by other processes, etc.

15 ‘ 35
C$3210 - Fall 2017

solation mechanisms in operating
systems

1. User/kernel mode flag (aka ring or Privilege Level)
2. Address spaces
3. Timeslicing (later)

4. System call interface

16 ‘ 35
C$3210 - Fall 2017

Hardware isolation in x86

15 32 10
Index T RPL

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

» x86 support: kernel/user mode flag
e CPL (current privilege level): lower 2 bits of %cs
o 0: kernel, privileged

o 3:user, unprivileged

17 ‘ 35
C$3210 - Fall 2017

Hardware isolation in x86 (aka ring)

Protection Rings

Operating
System

Kernel Level 0
Operating System

g

Services

Level 2
Applications

Figure 5-3. Protection Rings

18 / 35

CS3210 - Fall 2017

What does ‘ring 0" protect?

» Protects everything relevant to isolation
o writes to %cs (to defend CPL)
o every memory read/write is checked for privilege level
o I/O port accesses are privileged
o control register accesses (eflags, %cs4, ...)

e Q: What happens if a user program attempts to execute a privileged
instruction?

19 ‘ 35
C$3210 - Fall 2017

How to switch b/w rings (ring 0 <-> ring
3)?

« Controlled transfer: system call
o int or sysenter instruction set CPL to 0
o set CPL to 3 before going back to user space

o E.g., every read or write to screen or disk requires int in x86.

20 ‘ 35
C$3210 - Fall 2017

System call handling

» Switches to a kernel determined entry point.
« Kernel must:
o Validate the system call arguments
o Determine if the process is allowed to perform the operation

o Deny or execute it.

21 ‘ 35
C$3210 - Fall 2017

Making system calls in xv6 (usys.S)

01 #include "syscall.h"
02 #include "traps.h"

03

04 #define SYSCALL(name) \
05 .globl name; \
06 name: \
07 movl $SSYS_ ## name, %eax; \
08 int $T_SYSCALL; \
09 ret

10

11 SYSCALL(fork)
12 SYSCALL(exit)
13 .

2.2 ‘ 35
C$3210 - Fall 2017

Returning back to userspace
(trapasm.S)

e syscall() -> trapret() -> iret

01 .globl trapret

02 trapret:

03 popal

04 popl %gs

05 popl %fs

06 popl %es

07 popl %ds

08 addl $0x8, %esp ## trapno and errcode
09 iret

23 ‘ 35
C$3210 - Fall 2017

How to isolate process memory?

o Idea: "address space"

o Give each process own memory space

o Prevent it from accessing other memory (kernel or other processes)
» x86 provides "paging hardware" (next week)

o MMU: VA -> PA

24 ‘ 35
C$3210 - Fall 2017

Virtual address space in xv6

$o=> hoeoeeoeeeeos + <= OXFFFFFFFF
I I I
| | free memory |
| R T +
kernel | | kernel text/data | 4MB
space | R LR + <= 0x80100000
(CPL=0) | | BIOS |
T L E T LT T T a——— + <= 0x80000000 (KERNBASE)
I I heap I
| L +
user | | stack |
space | R LR E R +
(CPL=3)| | user text/data |

+
1
1l
\"
+
1
1
1
1
1
:
1
1
1
1
1
1
:
1
1
1
+
A
1l

0x00000000

25‘ 35
C$3210 - Fall 2017

How to isolate CPU?

e Prevent a process from hogging the CPU, e.g. buggy infinite loop
« Cooperative vs. uncooperative scheduling
o Yield vs. clock driven

» xXv6 relies on clock interrupt for context switching (next week)

26 ‘ 35
C$3210 - Fall 2017

How to represent a process in xv6
proc.h)?

01 struct proc {

02 uint sz; /] Size of process memory (bytes)
03 pde_t* pgdir; // Page table

04 char *kstack; // Bottom of kernel stack

05 enum procstate state; // Process state

06 int pid; // Process ID

07 struct proc *parent; // Parent process

08 struct trapframe *tf; // Trap frame for current syscall
09 struct context *context; // swtch() here to run process

10 void *chan; // If non-zero, sleeping on chan

11 int killed; // If non-zero, have been killed

12 struct file *ofile[NOFILE]; // Open files

13 struct inode *cwd; // Current directory

14 char name[16]; // Process name (debugging)

15 };

27 ‘ 35
C$3210 - Fall 2017

Code: first kernel code (entry.S)

e entry point of kernel
» enable paging
e setup stack

e handover to main in main.c

2.8 ‘ 35
C$3210 - Fall 2017

Code: the first process (proc.c)

» allocate a proc with allocproc()
e setup vm: setupkvm() and inituvm()

 setup tf to launch initcode.S

29 ‘ 35
C$3210 - Fall 2017

The first address space in xv6

R R EEEE PR + <= OXFFFFFFFF
I I
| free memory |
Hfmmmmemmmeaaeaas +
/ | kernel text/data | (kernel)
R + <= 0x80100000
+o BIOS |
physical mem [At + <= 0xB80000000
/ /| heap | (KERNBASE)
R B +
| kernel text/data | + | stack |
dommmmeemmeeeaaaa + dommmmeemmeeeaaaa +
| BIOS |/ | user text/data | (initcode)
L R + L R + <= Ox00000000

30 ‘ 35
C$3210 - Fall 2017

Code: a new kernel stack (proc.c)

o e e e e + <= proc=>kstack + KSTACKSIZE
I esp I

I eip I

fmmmm e e mmmemeaas + <= proc=>tf

| trapret |
e +

| elp --------- => forkret

| |
Fmmmmmmm e e + <= proc=>context
I (empty) I

mm e mmeeeeeas + <= proc=>kstack

31‘ 35
C$3210 - Fall 2017

Code: running the first process

e mpmain()

e scheduler()

e Truns initcode.S

Code: the first system call (initcode.S)

 handover to "/init" (Q: why not just invoke "/init"?)

01 .globl start

02 start:

03 pushl $Sargv // argv[] = {init, 0}

04 pushl $init // init[] = "/init\O"

05 pushl $0 // where caller pc would be
06 movl $SYS_exec, %eax

07 int $T_SYSCALL

33 ‘ 35
C$3210 - Fall 2017

Code: the /init process (init.c)

01 1int main(void) {
02 open("console", O _RDWR) // Q1?

03 dup(0); /] Q2?2
04 dup(0); /] Q3?
05 for(;;) {

06 if (!fork()) /] Q4?
07 exec("sh", argv); // Q5?
08 wait();

09 }

10 }

$ git clone git@github.gatech.edu:cs3210-fall2017/cs3210-pub
or

$ cd cs3210-pub
S git pull

34‘ 35
C$3210 - Fall 2017

References

Intel Manual
UW CSE 451
OSPP

MIT 6.828

» Wikipedia

e The Internet

35‘35

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

