
CS3210: Shells and Interfaces
Lecture 3

Instructor: Dr. Tim Andersen

1 / 36

Shells
OS needs a default mode of interaction with the user

The shell allowed complex programs to be built up from small programs

The first scripting language (required no compilation)

Pipes and redirects allowed standalone programs to communicate

2 / 36

Operating System Interfaces
Need the interface to be simple but allow for complexity

Trick is to create a general system based on a few mechanisms

xv6 mimics Ken Thompson and Dennis Richie's Unix interface and
internals

Provides a narrow interface with a surprising degree of generality

BSD, Linux, Mac OS X, Solaris, and even Windows rely on a Unix-like
interface

3 / 36

Operating system interfaces
Multiple programs interact each other with pipes and redirects

echo hello | wc --chars
cat < y | sort | uniq | wc > y1

The OS supports interactions with

Processes and scheduling
System call & files and file descriptors

Everything the OS does, all its requirements, begin with the shell

Even devices have shell interfaces with /dev, e.g., ls >
/dev/tcp/127.0.0.1/8000 dumps the directory contents to localhost port
8000

4 / 36

Kernel space vs. User space
Kernel

a special program that provides services to running programs
Process

has memory containing instructions, data, and a stack
System call

interface between kernel space and user space
e.g., open(), close(), read(), fork(), ...

5 / 36

Open
NAME
 open, creat - open and possibly create a file or device

SYNOPSIS
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>

 int open(const char *pathname, int flags);
 int open(const char *pathname, int flags, mode_t mode);

 int creat(const char *pathname, mode_t mode);

DESCRIPTION
 Given a pathname for a file, open() returns a file descriptor, a small,
 nonnegative integer for use in subsequent system calls (read(2), write(2),
 lseek(2), fcntl(2), etc.). The file descriptor returned by a successful call
 will be the lowest-numbered file descriptor not currently open for the process.

6 / 36

Dup
NAME
 dup, dup2, dup3 - duplicate a file descriptor

SYNOPSIS
 #include <unistd.h>

 int dup(int oldfd);
 int dup2(int oldfd, int newfd);

 #define _GNU_SOURCE /* See feature_test_macros(7) */
 #include <fcntl.h> /* Obtain O_* constant definitions */
 #include <unistd.h>

 int dup3(int oldfd, int newfd, int flags);

DESCRIPTION
 These system calls create a copy of the file descriptor oldfd.

 dup() uses the lowest-numbered unused descriptor for the new descriptor.

 After a successful return from one of these system calls, the old and new file

 descriptors may be used interchangeably. They refer to the same open file
 description (see open(2)) and thus share file offset and file status flags; for
 example, if the file offset is modified by using lseek(2) on one of the
 descriptors, the offset is also changed for the other.

7 / 36

Fork
NAME
 fork - create a child process

SYNOPSIS
 #include <unistd.h>

 pid_t fork(void);

DESCRIPTION
 fork() creates a new process by duplicating the calling process.
 The new process, referred to as the child, is an exact duplicate
 of the calling process, referred to as the parent, except for the following points:

 * The child has its own unique process ID.
 * The child's parent process ID is the same as the parent's process ID.

RETURN VALUE
 On success, the PID of the child process is returned in the parent, and 0 is
 returned in the child. On failure, -1 is returned in the parent, no child

 process is created, and errno is set appropriately.

8 / 36

Pipe
NAME
 pipe, pipe2 - create pipe

SYNOPSIS
 #include <unistd.h>

 int pipe(int pipefd[2]);

 #define _GNU_SOURCE /* See feature_test_macros(7) */
 #include <fcntl.h> /* Obtain O_* constant definitions */
 #include <unistd.h>

 int pipe2(int pipefd[2], int flags);

DESCRIPTION
 pipe() creates a pipe, a unidirectional data channel that can be used for
 interprocess communication. The array pipefd is used to return two file
 descriptors referring to the ends of the pipe. pipefd[0] refers to
 the read end of the pipe. pipefd[1] refers to the write end
 of the pipe. Data written to the write end of the pipe is buffered by the
 kernel until it is read from the read end of the pipe.

9 / 36

Close
NAME
 close - close a file descriptor

SYNOPSIS
 #include <unistd.h>

 int close(int fd);

DESCRIPTION
 close() closes a file descriptor, so that it no longer refers to any file and
 may be reused. Any record locks (see fcntl(2)) held on the file it was
 associated with, and owned by the process, are removed (regardless
 of the file descriptor that was used to obtain the lock).

 If fd is the last file descriptor referring to the underlying open file
 description (see open(2)), the resources associated with the open file
 description are freed; if the descriptor was the last reference to a file
 which has been removed using unlink(2) the file is deleted.

RETURN VALUE
 close() returns zero on success. On error, -1 is returned, and errno

 is set appropriately.

10 / 36

A kernel and two user processes

Protection between user and kernel spaces

CPU's mechanism: privileged mode vs. unprivileged mode
each process in user space can access only its own memory

strace

a tool to trace system calls

11 / 36

https://en.wikipedia.org/wiki/Strace

Example: echo hello
$ strace echo hello

 execve("/usr/bin/echo", ["echo", "hello"], [/* 60 vars */]) = 0
 ...
 write(1, "hello\n", 6) = 6
 ...
 exit_group(0) = ?

system calls: execve, write, exit_group

12 / 36

Example: echo hello > output
$ strace -f sh -c "echo hello > output"

 execve("/usr/bin/sh", ["sh", "-c", "echo hello > output"], [/* 60vars*/]) = 0
 ...
 open("output", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3
 ...
 dup2(3, 1) = 1
 close(3) = 0
 ...
 write(1, "hello\n", 6) = 6
 ...
 exit_group(0) = ?

13 / 36

More examples
$ echo hello | wc --chars
$ uptime

Pipe between echo and wc
Get uptime from /proc/loadavg

14 / 36

Shell
A program that reads commands from the user and executes them

User interface to UNIX-like systems

A user program, not part of the kernel

easily replaceable
e.g., bash, zsh, csh, etc.

Shows power of system call interface

Essentially a user program designed to allow users to interact with the
kernel via system calls

15 / 36

Processes and memory
 01 int pid = fork();
 02 if(pid > 0) { /* parent */
 03 pid = wait();
 04 } else if(pid == 0){ /* child */
 05 execl("/bin/echo", "hello");
 06 exit(); /* never be here */
 07 }

fork system call create a new process

a child process has the same memory contents with its parent but
does not share memory (unless there is a shared memory space
allocated)

execl system call loads new memory image from a file

wait system call waits until child exits

16 / 36

File descriptors
A small integer representing a kernel-managed object

file, directory, device, pipe, etc.

Abstract away the differences between files, pipes, etc.

making them all look like byte stream
a process may read from or write to file descriptors

Maintains an offset associated with it

read(fd, buf, n)
write(fd, buf, n)

Each process starts with 3 file descriptors: 0, 1, and 2.

0 = standard input (stdin)
1 = standard output (stdout)
2 = standard error (stderr)

These can be closed and reassociated

17 / 36

File descriptor table
Each process has a file descriptor table

0, 1, 2: standard input, output, error
3, ...: open("output", ...)

File descriptor in xv6 and linux kernel

an index of the per-process FD table

System calls which allocate new file descriptor

open(), dup(), pipe(), ...

A newly allocated file descriptor

the lowest-numbered unused descriptor in per-process table

Fork causes a child to inherit the parent descriptor table

18 / 36

Example: cat
cat input.txt, cat < input.txt, ls | cat

19 / 36

Example: cat
cat input.txt, cat < input.txt, ls | cat

 01 for(;;){
 02 n = read(0, buf, sizeof(buf)); /* stdin */
 03 if(n == 0)
 04 break;
 05 if(n < 0){
 06 fprintf(2, "read error\n"); /* stderr */
 07 exit();
 08 }
 09 if(write(1, buf, n) != n){ /* stdout */
 10 fprintf(2, "write error\n"); /* stder */
 11 exit();
 12 }
 13 }

20 / 36

Example: a shell for "cat < input.txt"
 01 argv[0] = "cat";
 02 argv[1] = 0;
 03 if(fork() == 0) {
 04 close(0);
 05 open("input.txt", O_RDONLY); /* what is fd of open? why? */
 06 exec("cat", argv);
 07 }

fork also copies the file descriptor table
a parent and its child process shares the file descriptor

exec does not override the file descriptor

21 / 36

Duplicating a �le descriptor
 01 fd = dup(1);
 02 write(1, "hello ", 6);
 03 write(fd, "world\n", 6);

dup system call duplicates an existing file descriptor
a returning new FD refers the same file
dup2(newfd, oldfd)

ls existing-file non-existing-file > tmp1 2>&1
2>&1: redirecting stderr to stdout
close(2); dup(1);

22 / 36

Pipes
A unidirectional data channel that can be used for interprocess
communication
Exposes a pair a file descriptors

int pipe(int pipefd[2])
pipefd[0] is for reading
pipefd[1] is for writing

23 / 36

Example: a shell for "echo hello | wc --
char"

24 / 36

Example: a shell for "echo hello | wc --
char"
 01 int p[2];
 02 char *argv[2];
 03 argv[0] = "wc";
 04 argv[1] = 0;
 05 pipe(p); /* create a pipe */
 06 if(fork() == 0) { /* child process */
 07 close(0);
 08 dup(p[0]); /* stdin = p[0] */
 09 close(p[0]);
 10 close(p[1]);
 11 exec("/bin/wc", argv);
 12 } else { /* parent process */
 13 write(p[1], "hello\n", 6);
 14 close(p[0]);
 15 close(p[1]);
 16 }

25 / 36

DEMO
$ echo "hello there" | sed "s/hello/hi/" >& hi.txt

26 / 36

DEMO
$ echo "hello there" | sed "s/hello/hi/" >& hi.txt

 int fd[2], filefd;
 pipe(fd);
 if (fork() == 0) // child process
 {
 close(fd[1]);
 close(0);
 dup(fd[0]);
 filefd = open("hi.txt", O_CREAT | O_WRONLY | O_TRUNC);
 close(1);
 dup(filefd);
 close(2);
 dup(filefd);
 close(fd[0]);
 close(filefd);
 execlp("sed", "sed", "s/hello/hi/", NULL);
 }
 else // parent process
 {
 close(fd[0]);

 close(1);
 dup(fd[1]);
 close(fd[1]);
 execlp("echo", "echo", "hello there", NULL);
 }

27 / 36

Code review: xv6 shell (xv6-public/sh.c)
An ordinary user-space program

main(): entry function
parsecmd(): parse command line
rundcmd(): execute programs

Can you spot followings?

executing a simple command: echo hello
redirection: echo hello > output
pipes: echo hello | wc --char

Why cd is implemented at the shell?

28 / 36

Summary & Questions
Now we have a feel for what Unix system call interface provides
How to implement the interface?
Why have an OS at all? why not just a library?

then apps are free to use it, or not -- flexible apps can directly interact
with hardware
some tiny OSes for embedded processors work this way

29 / 36

Operating system organization
Goal: process isolation & sharing

a process should not corrupt the memory of the kernel or another
process
nor consume all the CPU time/memory
nor run arbitrary privileged instructions, etc.

Applications must use OS interface, cannot directly interact with
hardware so that apps cannot harm operating system

30 / 36

Key design factors
What to put below/above the system call interface
How to isolate user space and kernel space

for applications not to harm kernel space

31 / 36

Hardware support for isolation
Processors support user mode and kernel mode

some instructions can only be executed in kernel mode
e.g., change the address translation map, talk to I/O devices

If an application executes a privileged instruction, hardware doesn't allow
it

instead switches to kernel mode then kernel can clean up

32 / 36

Hardware isolation in x86
x86 support: kernel/user mode flag
CPL (current privilege level): lower 2 bits of %cs

0: kernel, privileged
3: user, unprivileged

system calls: controlled transfer
int or sysenter instruction set CPL to 0
set CPL to 3 before going back to user space

33 / 36

Monolithic kernel: Linux, xv6, etc.
A traditional design: all of the OS runs in kernel mode
Kernel interface ~= system call interface
Good: easy for subsystems to cooperate

one cache shared by file system and virtual memory
Bad: interactions are complex

leads to bugs, no isolation within kernel

34 / 36

Alternative: microkernel design
Many OS services run as ordinary user programs

e.g., file system in a file server
Kernel implements minimal mechanism to run services in user space

IPC, virtual memory, threads
Kernel interface != system call interface

applications talk to servers via IPCs
Good: more isolation
Bad: IPCs may be slow

35 / 36

Debate
Tanenbaum-Torvalds debate
Most real-world kernels are mixed: Linux, OS X, Windows

e.g., X Window System

36 / 36

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/X_Window_System

