
CS3210: Operating Systems
Lecture 1

Instructors: Dr. Tim Andersen and Mr. Kyle Harrigan

CS3210 - Fall 2017
1 / 46

What is this
course
about?

Continues from CS 2200 Operating Systems

Application and Lab focused. You learn by doing in
this class.

Forces you to understand how OS's actually work in
the real world (no convenient abstractions)

UNIX/Linux focus

May be some students' first exposure to the full x86
architecture (bootstrapping, MMU, real mode, paging,
traps, etc.)

CS3210 - Fall 2017
2 / 46

What is this
course
about?

Course
Goals

Gain a detailed knowledge of how an Operating
System it built up

Gain hands-on experience working with a real kernel

Come away with valuable experience that can be
applied to other kernels

CS3210 - Fall 2017
3 / 46

Who should
be taking
this course?

Useful for those who want to understand systems and
platforms

E.g., want to improve Android or contribute to
Linux kernel

Those interested in embedded systems

Those interested low-level programming

Those who want to write drivers and hardware
abstraction layers

Not good for students who want to work in Java,
Python, or other high level software unless you are
curious about what's under the hood

CS3210 - Fall 2017
4 / 46

Prerequisites
C programming (strict)

CS 2200: Systems and Networks (strict)

CS 2110: Computer Organization and Programming (recommended)

CS 3220: Processor Design (recommended)

"I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones." -- Linus Torvalds

CS3210 - Fall 2017
5 / 46

What is an
operating
system?

e.g. OSX, Windows, Linux, FreeBSD, etc.

What does an OS do for you?

Abstract the hardware for convenience and
portability

Multiplex the hardware among multiple
applications

Isolate applications to contain bugs

Allow sharing among applications

CS3210 - Fall 2017
6 / 46

What is an
operating
system?

View:
layered
organization

Layers:

User: applications (e.g., vi and gcc)

Kernel: file system, process, etc.

Hardware: CPU, mem, disk, etc.

-> Interface between layers

CS3210 - Fall 2017
7 / 46

What is an
operating
system?

View:
layered
organization

View: core
services

Typical Core Services:

Processes

Memory

File contents

Directories and file names

Security

Many others: users, IPC, network, time, terminals, etc.

-> Abstraction for applications

CS3210 - Fall 2017
8 / 46

Example: system calls
Interface: applications talk to an OS via system calls

Abstraction: process and file descriptor

 fd = open("out", 1);
 write(fd, "hello\n", 6);
 pid = fork();

CS3210 - Fall 2017
9 / 46

Why is designing an OS interesting?
Conflicting design goals and trade-offs

Efficient yet portable

Powerful yet simple

Isolated yet interactable

General yet performant

Some open (ongoing) challenges

Security

Multi-core

CS3210 - Fall 2017
10 / 46

General information
Web: http://cs3210.cc.gatech.edu

Piazza: https://piazza.com/configure-classes/fall2017/cs3210agr

GitHub https://github.gatech.edu/cs3210-fall2017

Text: freely available online

xv6: a simple, Unix-like teaching operating system

(optional) Linux Kernel Development

CS3210 - Fall 2017
11 / 46

http://cs3210.cc.gatech.edu/
https://piazza.com/configure-classes/fall2017/cs3210agr
https://github.gatech.edu/cs3210-fall2017

General information
Two instructors for this course:

Dr. Tim Andersen

Mr. Kyle Harrigan

Office hours: TBD

Two TAs:

Meenal Maheshwari

Office hours: TBD

Anita Ramasamy

Office hours: TBD

CS3210 - Fall 2017
12 / 46

Grading policy
Preparation and In-Class Assignments (10%)

2 Quizzes (10% each = 20%)

Lab (10% each = 50% + 10% bonus)

Final project (20%)

Proposal presentation (5%)
Demo & presentation (10%)
Write-up (5%)

CS3210 - Fall 2017
13 / 46

Class structure
Lecture and Demos

Tutorial

Individual exercises

Group meeting

Both meet in Klaus 1456, Tues/Thurs 12:00pm - 1:15pm

Bring your laptop!

CS3210 - Fall 2017
14 / 46

Class structure
https://cs3210.cc.gatech.edu/cal.html

First week:

Lecture: about PC, Booting, and C

Tutorial: tools

NOTE: preparation questions and reading

CS3210 - Fall 2017
15 / 46

https://cs3210.cc.gatech.edu/cal.html

About labs
A toy operating system, called JOS (exokernel)

Lab 1: Booting a PC

Lab 2: Memory management

Lab 3: User environments

Lab 4: Preemptive multitasking

Lab 5: File system and shell

Lab 6: Network driver

CS3210 - Fall 2017
16 / 46

About labs
"Lab 1: Booting a PC" is out (DUE: Sep 8)
Ask questions via Piazza (preferred), Email

CS3210 - Fall 2017
17 / 46

Lab Policies
Labs build on each other. Important to have labs working completely to
do later labs.

Each lab has challenge questions (5%) and regular questions (2%). That
need to be written and turned in with code.

Labs are commited, tagged, and pushed to a GitHub repo for grading.
Please don't email labs. If it's not committed, it will not be graded.

We are using a Vagrant Trusty32-based configuration on VirtualBox as our
official configuration.

Pull this file from the GitHub
Use another VM at your own risk.

Each student has assigned GATech GitHub repos for turning in labs and
other assignments. Only these will be used for grading.

Best to commit and push daily -- also best way to share code with the
instructors and TAs is GitHub.

CS3210 - Fall 2017
18 / 46

About quiz, project
Two "quizzes" (in-class, about lec/tut/lab)

80 minutes

Final project

Team project on a topic of your choosing (with approval of
instructors)

No more than 4 students per team

On scale of Lab 6 (Bonus project only this semester)

https://cs3210.cc.gatech.edu/proj.html

Pre-proposal, Team proposal, Demo day, Write-up

CS3210 - Fall 2017
19 / 46

https://cs3210.cc.gatech.edu/proj.html

About preparation questions and in-
class assignments

Every lecture and tutorial (DUE: by 11:59 AM on class day)

In-class assignments are due a week from the class day at midnight.

No late prep questions or in-class submissions accepted.

Must be turned in on the prep GitHub (https://github.gatech.edu/cs3210-
fall2017/cs3210-prep-YOUR-USERNAME.git) by the due date/time.

CS3210 - Fall 2017
20 / 46

https://github.gatech.edu/cs3210-fall2017/cs3210-prep-YOUR-USERNAME.git

Class policy
Late days

Five days of grace period can be used on one lab deadline (except
bonus lab)

Grace period is for non-official emergencies (job interviews, broken
laptops, etc.)

Labs incur 10% per day late penalty otherwise

Repeat submissions are allowed (can incur late penalties)

No cheating

Cheating vs. collaboration
Write the name(s) of your sources

See, https://cs3210.cc.gatech.edu/info.html

CS3210 - Fall 2017
21 / 46

https://cs3210.cc.gatech.edu/info.html

Equipment
A laptop or other computer is required for this course.

Must be able to install the necessary software on it (VirtualBox,
QEMU, etc.)

Let us know in advance if this is a problem.

CS3210 - Fall 2017
22 / 46

Today's agenda
What is an operating system?

Design

Goal

Role

Example: xv6 and JOS

Lab Overview

CS3210 - Fall 2017
23 / 46

Challenges in operating systems
Portability

Performance

Reliability

Security

CS3210 - Fall 2017
24 / 46

Challenges in (practical) operating
systems
e.g. Mac OSX, Windows, Linux

Legacy (compatibility)

Implementation

Business

CS3210 - Fall 2017
25 / 46

CS3210: JOS and xv6
Micro-kernel: JOS (exokernel)
Monolithic: xv6 (UNIX-like)

Book: Xv6, a simple Unix-like teaching operating system
Code: commentary

Our version (bug fixes as necessary):

$ git clone git@github.gatech.edu:cs3210-fall2017/cs3210-xv6-public.git

Public version:

$ git clone git://github.com/mit-pdos/xv6-public.git

CS3210 - Fall 2017
26 / 46

https://pdos.csail.mit.edu/6.828/2014/xv6.html
https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf
https://pdos.csail.mit.edu/6.828/2016/xv6/book-rev9.pdf

xv6 What is xv6?

A re-implementation of Unix Version 6 (1970's era OS)

Big enough to illustrate concepts, small enough to
digest in one semester

Used as a reference implementation for studying
concrete implementations of core concepts

Why not study Linux?

xv6 - 6000 lines
Linux v4 (kernel only) - ~165,000 lines!

CS3210 - Fall 2017
27 / 46

xv6

JOS

What is JOS?
A basic teaching operating system

Provides a skeleton for implementing the labs, with
key pieces left out for you to implement

Major parts of operating system you will build in JOS

Booting
Memory management
User environments
Preemptive multitasking
File system, spawn, and shell
Network driver
Open-ended project

Resulting operating system will run under QEMU, or
any x86-based personal computer

CS3210 - Fall 2017
28 / 46

Lab 1 Lab 1 - Booting
Review x86 assembly

Boot JOS for the first time under QEMU, familiarize
with debugger

Learn / review physical address space during bootup /
real mode

Step through bootup in gdb

Learn segmentation basics

Understanding boot loader

Learn about ELF binary format

Observe and understand transition from real mode to
protected mode

Become familiar with C calling conventions by
implementing your own backtrace

CS3210 - Fall 2017
29 / 46

Lab 1

Lab 2

Lab 2 - Memory Management
Kernel physical page management

Write the physical page allocator (and
deallocator...)

Virtual memory

Understand virtual, linear, and physical addresses

Implement reference counting, page table
management

Permissions and fault isolation

Initialize kernel address space

CS3210 - Fall 2017
30 / 46

Lab 1

Lab 2

Lab 3

Lab 3 - User Environments
Basics of getting a "process" running

In JOS terminology this is an "environment"

Allocating, creating, and running environments

Basic exception and system call handling

Interrupt Descriptor Table

Task State Segment

Trap Frames

Page faults, breakpoints, system calls

CS3210 - Fall 2017
31 / 46

Lab 1

Lab 2

Lab 3

Lab 4

Lab 4 - Preemptive Multitasking
Part A - Add multiprocessor support

Round-robin scheduling

Environment management

Part B - Implement fork()

Part C - Add Inter-Process Communication

Also hardware clock interrupts and preemption

CS3210 - Fall 2017
32 / 46

Lab 1

Lab 2

Lab 3

Lab 4

Lab 5

Lab 5 - File system and shell
Load and run on-disk executables

Be able to run a shell on the console

Build a simple read/write file system

CS3210 - Fall 2017
33 / 46

Lab 1

Lab 2

Lab 3

Lab 4

Lab 5

Lab 6

Lab 6 - Network Driver (optional)
Build a network stack

Understand QEMU virtual network

E1000 emulated card

PCI Interface

Memory-mapped I/O

DMA

Transmitting and receiving packets

CS3210 - Fall 2017
34 / 46

Tools The toolchain setup is critical up-front work for this
class

We will help you in the first tutorial (Thurs)

You can develop on whatever you want, and use
whatever you want, but our standardized
environment and tools will be used for grading.
You have been warned (again).

CS3210 - Fall 2017
35 / 46

Tools

QEMU

QEMU - Quick EMUlator
Performs hardware virtualization

Can emulate obscure processor architectures

Does share code with some other projects (VirtualBox)

Good for working with the kernel (GDB stub)

We will use it for this

CS3210 - Fall 2017
36 / 46

Tools

QEMU

git

git - the stupid content tracker
Created by Linus Torvalds in 2005 for development of
the Linux kernel

Of course, widely used now

All of our configuration management, assignment
turn-in, etc. will be done using git.

Commit early, commit often, push often!

We can help you better if we can see your code

We can grant you partial credit if you miss
deadlines

It is very easy for us to compare work across students

Don't cheat!

CS3210 - Fall 2017
37 / 46

Tools

QEMU

git

gdb

gdb - GNU project debugger
Hopefully you have experience...

You may be exposed to some new features of gdb

Kernel / Remote debugging

QEMU

Esoteric (but useful) commands

This isn't an IDE (though the TUI is close)

CS3210 - Fall 2017
38 / 46

Tools

QEMU

git

gdb

Vagrant

Vagrant
"Create and configure lightweight, reproducible, and
portable development environments"

A convenient front-end to provide reproducible
virtual machines

Easily hooks into Virtualbox, Parallels, VMWare, etc.

Our vagrant instance on github.gatech.edu will be the
de-facto machine for grading

Test with it before and after tagging your
submissions!

CS3210 - Fall 2017
39 / 46

Why using C for OS development?
Portability

No runtime

Direct hardware/memory access

(decent) Usability

CS3210 - Fall 2017
40 / 46

How are your C skills?
C is the most important skill to have for this class

OS programming involves a great deal of pointer arithmetic. The compiler
will not save you from these mistakes.

If your C skills are rusty, you may stuggle with the lab work.

Labs deadlines come quickly. Little time to build basic skills.

CS3210 - Fall 2017
41 / 46

Prep quiz: the C programming language
Open your laptop

http://cs3210.cc.gatech.edu/q/prep.txt

Download the quiz

Please submit to GitHub by 1 week from today (Aug 29 before midnight).

CS3210 - Fall 2017
42 / 46

http://cs3210.cc.gatech.edu/q/prep.txt

Selected feedback from last semester
"The amount you learn in this class is astronomical compared to
many other classes at GT. Also, the drop rate is insane, but please
don't water down the class because of this. It was a hard class but it
should remain a hard class. I kind of like the if you actually make it
through you probably get an A/B. There seem to be a number of
classes at tech where you can earn a C in a class but really can't apply
any of it (admittedly, been there done that). I like the fact that anyone
who makes it through this class will have no significant problems
writing C at the system level. So I guess for the better, the difficulty
was a good aspect of the class."

CS3210 - Fall 2017
43 / 46

Selected feedback from last semester
"The beginning was rough because they kinda assumed we knew stuff
about boot processes and computer architecture and that had me lost
for several weeks."

Goal: Hands-on walkthrough

"Text was pretty good, but certain visual aids would greatly help the
learning process if provided. Diagrams of memory layout / structures.
Flow charts/maps for various processes (trap/interrupt/syscalls,
context switching, etc.). When first starting the course with zero
experience with operating systems, it was a little overwhelming at
first, and I had to go through the source code to figure things out,
which took more time than ideal."

Goal: MORE PICTURES

"The lectures and pre-lecture questions were essentially useless"

Goal: More demos, hands-on

Bottom line: Expect less powerpoint! (today excluded)

CS3210 - Fall 2017
44 / 46

Next lecture
Tutorial: Group, Tools, Lab1

Register Piazza

Lab 1: Booting a PC is out (DUE: 11:59 PM, Sep 8)

Don't forget to submit "preparation question" (DUE: 11:59 AM, 24 Aug)

CS3210 - Fall 2017
45 / 46

https://piazza.com/gatech/fall2017/cs3210agr
https://tc.gtisc.gatech.edu/cs3210/2017/spring/lab/lab1.html

References
UW CSE 451

OSPP

MIT 6.828

Wikipedia

The Internet

CS3210 - Fall 2017
46 / 46

http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

